Hall Effect Vane Position Sensor

FEATURES

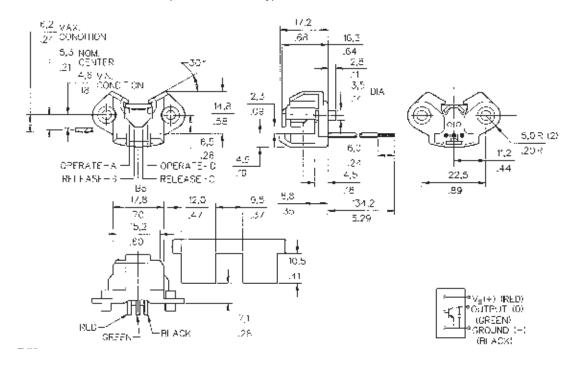
- Protection against random voltage spikes
 - electrical transients up to +80 volts
 reverse power supply to -80 volts
- Stainless steel mounting studs lock sensor in place
- Vane depth of 17,2 mm (.68 in.) allows flexibility in actuator placement
- Operating temperature range of –40 to +150°C
- 22 mA current consumption
- 4.5 to 24 VDC supply voltage range
- Current sinking output
- High output current capability up to 40 mA absolute maximum

GENERAL INFORMATION

2AV Series Hall effect vane position sensors are specifically designed to translate the relative position of a ferrous metal actuator into a digital electronic signal. The Hall effect integrated circuit and the magnet are in a rugged plastic housing. When a ferrous metal actuator passes between them, the magnetic flux is shunted away from the sensor. This causes the output signal to change state.

ORDER GUIDE

Catalog Listing	Description
2AV54	Current sinking Hall effect vane sensor


MECHANICAL CHARACTERISTICS

Operating	Left or Right			Differential
Range	Operate	Release	Diff.	L to R, R to L
12 VDC, 25°C	1,19±,30	$-1,04\pm,33$	0,38±,33	2,21±,64 mm
	.047±.012	041±.013	.015±.013	.087±.025 in.

ENVIRONMENTAL CHARACTERISTICS

Vibration	45 G per MIL-STD-202, Method 204, condition E
Humidity	Up to 500 hours @ 85°C, 80% RH
Salt spray	48 hours per IEC-68-2-11
Temperature shock	250 air-to-air shocks @ -40° to +130°C

MOUNTING DIMENSIONS (for reference only)

